Existence of Augmented Lagrange Multipliers for Semi-infinite Programming Problems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Augmented Lagrangians in semi-infinite programming

We consider the class of semi-infinite programming problems which became in recent years a powerful tool for the mathematical modelling of many real-life problems. In this paper, we study an augmented Lagrangian approach to semi-infinite problems and present necessary and sufficient conditions for the existence of corresponding augmented Lagrange multipliers. Furthermore, we discuss two particu...

متن کامل

Bilinear Factorization via Augmented Lagrange Multipliers

This paper presents a unified approach to solve different bilinear factorization problems in Computer Vision in the presence of missing data in the measurements. The problem is formulated as a constrained optimization problem where one of the factors is constrained to lie on a specific manifold. To achieve this, we introduce an equivalent reformulation of the bilinear factorization problem. Thi...

متن کامل

Semi-infinite linear programming approaches to semidefinite programming problems∗

Interior point methods, the traditional methods for the SDP , are fairly limited in the size of problems they can handle. This paper deals with an LP approach to overcome some of these shortcomings. We begin with a semi-infinite linear programming formulation of the SDP and discuss the issue of its discretization in some detail. We further show that a lemma due Pataki on the geometry of the SDP...

متن کامل

First order optimality conditions for generalized semi-infinite programming problems

In this paper we study first order optimality conditions for the class of generalized semi-infinite programming problems (GSIPs). We extend various wellknown constraint qualifications for finite programming problems to GSIPs and analyze the extent to which a corresponding Karush-Kuhn-Tucker (KKT) condition depends on these extensions. It is shown that in general the KKT condition for GSIPs take...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Optimization Theory and Applications

سال: 2017

ISSN: 0022-3239,1573-2878

DOI: 10.1007/s10957-017-1091-6